China factory Custom Metal Powder Metallurgy CNC Best Spur Gear Spiral Bevel Gears Set worm gear motor

Product Description

Product type Sintered metal parts / Planetary Sun Drive Spur Gea
Material Stainless steel,Steel(Iron,)Brass,Copper (According to product design requirements)
Tolerance ±0.01mm
Surface Treatment As your requirement
Application Tool industry,Automotive, instrument, electrical equipment, household appliances, furniture, mechanical equipment,daily living equipment, electronic sports equipment, light industry products, sanitation machinery, etc.
Shape Any other material and dimension depends on customers’ demand.
QC system 100% inspection before shipment
Returned Goods Managing With quality problem or deviation from drawings
Warranty Replacement at all our cost for rejected products
Payment terms T/T at sight, Paypal, Western Union,etc.
Lead time 7-15 working days as usual,It will based on the detailed order quantity.

Why Choose Us

1.  We have professional powder metallurgy production equipment and team;
2.  We can accompany customers to develop products;
3.  Just send an idea that you want to try, you don’t even need to know what powder metallurgy;
4.  Our sales will reply you within 24 hours to confirm further details and give the estimated quote time;
5.  Our team will evaluate your inquiry and provide our offer within next 1~3 working days.
 

Order Process

1.   You send us drawing or sample.
2.  We carry through project assessment.
3.  We give you our design for your confirmation.
4.  We make the sample and send it to you after you confirmed our design.
5.  You confirm the sample then place an order and pay us deposit.
6.  We start producing.
7.  When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers.
8.  Trade is done, thank you!!

Additional Capabilities CAD Design Services CAM Programming Services Coordinate Measuring Machines (CMM) Reverse Engineering
 

Product Show

Some Parts We Manufacture

Self-Lubricated Bushing
Structural Parts
Gears

About Us

DERYOUNG Technology company is a professional metal parts manufacturer, which with more than 20 years of experience in the development and production of sintered metals. Each year we produce more than 100 million premium sintered metal parts for our customers. We are mainly produce oil bearing, gear, and metal parts. We support our customers in the design and material selection of sintered parts, providing the best solution for your applied parts through our specialized equipment compression molds, furnaces, handling, sizing, deburring and impregnation processes.

Design Tips: Powder Metallurgy Gears

1.  Radius > 0.25 mm is required to manufacture the die;
2.  Helical teeth should feature a helical angle < 30º in order to limit side pressure on the punches;
3.  Introduction of a draft angle > 5º in the upper diameter reduce the tooling cost;
4.  The distance between tooth root and central hub diameter must be: > 3 mm (Robust Tooling).

If you want to know more about the product, please send us a message.

 

The Powder Metallurgy Manufacturing Process

FAQ
Q: How can I get the quotation?
A: Please send us information for quote: drawing, material, weight, quantity and request,w can accept PDF, ISGS, DWG, STEP file format.
   If you don’t have drawing, please send the sample to us,we can quote based on your sample too.
 
Q: What’s your MOQ?
A: In general 1000pcs,but can accept low quantity in some special conditions.
 
Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the cost of freight.
 
Q: What about the leading time for mass production?
A: Honestly, it depends on the order quantity. Normally, 15 days to 20 days after your deposit if no tooling needed.
 
Q: What if the parts are not good?
A: We can guarantee good quality,but if happened,please contact us immediately, take some pictures, we will check on the problem,and solve it asap.
 
Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance ,balance before shippment

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: Internal Gear
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

spiral gear

How do spiral gears handle variations in tooth engagement during operation?

Spiral gears are designed to handle variations in tooth engagement during operation effectively. The unique helical tooth arrangement of spiral gears allows them to accommodate these variations and provide several benefits. Here’s how spiral gears handle variations in tooth engagement:

  • Gradual Engagement: One of the key advantages of spiral gears is their ability to achieve gradual tooth engagement. As the gears rotate, the helical shape of the teeth allows them to come into contact gradually, starting from one end of the gear to the other. This gradual engagement minimizes the impact and shock that would occur with sudden full tooth contact in other gear types. It results in smoother and quieter operation, reducing noise, vibrations, and stress on the gear system.
  • Increased Tooth Contact Area: Spiral gears provide a larger tooth contact area compared to straight-cut or spur gears. The helical tooth profile extends the contact length along the gear face, distributing the load over multiple teeth at any given moment. This increased contact area enables spiral gears to handle higher loads and transmit torque more efficiently.
  • Load Sharing: Due to the helical arrangement, spiral gears naturally distribute the load across multiple teeth. This load-sharing characteristic helps to minimize tooth wear and fatigue. As the gears rotate, different teeth come into contact, ensuring that the load is distributed evenly. This load sharing capability enhances the gear system’s durability and extends its service life, particularly in applications with fluctuating loads.
  • Reduction of Side Thrust: Spiral gears generate an axial thrust force during operation. However, by using pairs of spiral gears with opposite helix angles, this side thrust force can be greatly reduced or even eliminated. When paired gears with opposite helix angles mesh together, the axial thrust forces cancel each other out. This eliminates the need for additional thrust bearings or complex gear arrangements to counteract the axial forces, simplifying the gear system design.
  • Improved Lubrication: The helical tooth profile of spiral gears promotes better lubrication. The continuous sliding motion between the teeth creates a pumping action that helps distribute lubricant along the tooth surfaces. This improved lubrication reduces friction, heat generation, and wear, enhancing the overall efficiency and longevity of the gear system.

These features of spiral gears—gradual engagement, increased tooth contact area, load sharing, reduction of side thrust, and improved lubrication—make them highly effective in handling variations in tooth engagement during operation. Spiral gears are commonly used in various applications such as automotive transmissions, industrial machinery, and power generation systems, where smooth and reliable power transmission is crucial.

spiral gear

What are the limitations of using spiral gears in certain applications?

While spiral gears offer numerous advantages, they also have certain limitations that need to be considered when selecting them for specific applications. Here are some limitations of using spiral gears:

  • Axial Thrust: Spiral gears generate axial thrust due to their helical tooth arrangement. This axial thrust can impose additional forces on the gear shafts and bearings, requiring proper design considerations and potential incorporation of thrust bearings in certain applications. Managing and compensating for axial thrust is crucial to ensure smooth gear operation.
  • Manufacturing Complexity: The manufacturing process for spiral gears involves more complexity compared to straight-toothed gears. The helical tooth profile requires specialized cutting tools and machining techniques, adding to the manufacturing cost and complexity. This complexity may limit their use in applications with strict cost constraints or where simplicity of manufacturing is a priority.
  • Axial Space Requirement: Spiral gears require more axial space compared to parallel-axis gears. The helical tooth profile results in a longer gear face width, which can limit their use in applications with space constraints. It is important to ensure that sufficient axial space is available to accommodate the larger size of spiral gears.
  • Gear Alignment: Proper gear alignment is critical for spiral gears to function optimally. Any misalignment between the driving and driven gears can result in increased noise, vibration, and premature wear. Achieving and maintaining precise gear alignment may require additional attention and care during installation and regular maintenance.
  • Speed Limitations: Spiral gears may have certain speed limitations due to the potential for tooth deflection and increased heat generation. At high speeds, the centrifugal forces acting on the helical teeth can cause deflection, leading to reduced gear accuracy and increased noise. Additionally, the sliding contact between the teeth can result in higher heat generation, requiring appropriate lubrication and cooling measures in high-speed applications.

While these limitations exist, they can often be managed or mitigated through proper design, engineering, and maintenance practices. It is important to carefully evaluate the specific requirements and constraints of the application to determine whether spiral gears are suitable or if alternative gear types may be more appropriate.

spiral gear

What is the purpose of using spiral gears in mechanical systems?

Spiral gears, also known as helical gears, serve several important purposes in mechanical systems. Their unique design and characteristics make them suitable for various applications. Here are some key purposes of using spiral gears:

  • Smooth and Quiet Operation: The helical tooth arrangement in spiral gears enables gradual tooth engagement, resulting in smoother and quieter operation compared to straight-cut gears. This makes them ideal for applications where noise reduction and smooth motion are essential.
  • High Load Capacity: Spiral gears can handle higher loads due to the helical tooth design. The load is distributed over multiple teeth, allowing for increased load-carrying capacity and improved strength. This makes spiral gears well-suited for heavy-duty applications that require the transmission of high torque or the handling of significant loads.
  • Efficient Power Transmission: The helical tooth arrangement in spiral gears helps minimize sliding friction between the teeth. As a result, spiral gears exhibit higher efficiency compared to straight-cut gears, as there are reduced power losses due to friction during gear operation. This efficiency is crucial in applications where power transmission needs to be optimized and energy losses minimized.
  • Axial Thrust Compensation: Spiral gears can be designed with opposite helix angles on mating gears, which helps cancel out the axial thrust generated during gear meshing. This feature eliminates the need for additional thrust bearings, simplifying the gear design and reducing complexity.
  • Versatility and Adaptability: Spiral gears can be manufactured in various configurations, including spur, helical, and double helical designs. This versatility allows for their application in a wide range of mechanical systems, including gearboxes, automotive differentials, machine tools, and industrial machinery. Their adaptability and compatibility with different gear types make them valuable components in various applications.

The purpose of using spiral gears in mechanical systems is to achieve smooth, efficient, and reliable motion transmission while handling high loads and providing noise reduction. Their unique design features make them a preferred choice in many applications where these characteristics are essential.

China factory Custom Metal Powder Metallurgy CNC Best Spur Gear Spiral Bevel Gears Set worm gear motorChina factory Custom Metal Powder Metallurgy CNC Best Spur Gear Spiral Bevel Gears Set worm gear motor
editor by CX 2024-01-04

Tags: